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Sunk costs are irrecoverable investments that should not influence decisions, because
decisions should be made on the basis of expected future consequences. Both human
and nonhuman animals can show sensitivity to sunk costs, but reports from across
species are inconsistent. In a temporal context, a sensitivity to sunk costs arises when
an individual resists ending an activity, even if it seems unproductive, because of the
time already invested. In two parallel foraging tasks that we designed, we found that
mice, rats, and humans show similar sensitivities to sunk costs in their decision-making.
Unexpectedly, sensitivity to time invested accrued only after an initial decision had been
made. These findings suggest that sensitivity to temporal sunk costs lies in a vulnerability
distinct from deliberation processes and that this distinction is present across species.

T
raditional economic theory suggests that
decisions should be based on valuations of
future expectations that ignore spent re-
sources that cannot be recovered [sunk costs
(1)]. However, extensive evidence shows that

humans factor such sunk costs into prospective
decisions, even when faced with better alterna-
tives (2, 3). Although early reports claimed that
humans are uniquely sensitive to sunk costs
(2, 3), it is becoming increasingly clear that non-
human animals exhibit parallel behaviors (4).
Previous nonhuman animal studies that at-

tempted to model the sunk cost phenomenon
have yielded conflicting evidence (4, 5). Observa-
tional and experimental field studies in swal-
lows, sparrows, mice, and bluegills have found
evidence both for and against the sunk cost ef-
fect in behaviors relating to parental investment
and willingness to care for young (6–10). Yet in
such studies, it has been difficult to disentangle
influences of investment history from those of
future prospects. Laboratory operant conditioning
paradigms in pigeons and rats that control for
future expectations when looking at reinforce-
ment learning behaviors have demonstrated that
nonhuman animals show increased work ethic
or suboptimal perseverative reward-seekingbehav-
iors that escalate with prior investment amount
(11, 12). However, these observations often relied
on situations of information uncertainty, where
subjects overworked in the absence of progress-
indicating cues. These observations also often
relied on automation or habit-like behaviors
(e.g., repetitive lever pressing) driving contin-
ued reward pursuit. Such confounding factors
in nonhuman animal studies obscure translation

to human sunk cost effects, which do not depend
on these mechanisms.
Laboratory foraging tasks provide an alterna-

tive approach to study decision-making by using
naturalistic behaviors that carry both ecological
validity and evolutionary significance and are
translatable across species (13). Foraging tasks
rely on optimizing reward-seeking under condi-
tions of limited resources, making them econom-
ic tasks.
We designed a foraging task in which subjects

spent time from a limited time budget waiting
for rewards [Fig. 1, Restaurant Row (14) and web-
Surf (15)]. The division of time spent during the
task reveals the economic preferences of the sub-
jects. All three species learned to forage in a way
that revealed preferences for certain rewards,
and all species used reliable subjective valuation
strategies to decide betweenmultiple competing
reward offers (supplementary text S1). Our neuro-
economic tasks directly test sensitivity to sunk
costs across species.
Flavors and genres of rewards (Fig. 1) allowed

us to measure subjective preferences as a func-
tion of cost, avoiding the confounding possibility
that different reward sizes might require differ-
ent consumption times. Multiple zones allowed
us to characterize multiple valuation processes
involved in decisions: initial commitment valu-
ations (offer zone), secondary reevaluations (wait
zone), and postconsumption hedonic valuations
(supplementary text S1 and S2). In this task, two
key factors minimized information uncertainty
and automated reward-seeking behavior as po-
tential confounding factors: (i) Subjects were pro-
vided full information on cost and investment
progress (tones counting down or download bar
shrinking), and (ii) earning rewards required sub-
jects to wait and withhold quitting after making
an initial acceptance decision (rather than re-
quiring a repetitive action).
To address susceptibility to sunk costs, we

examined quit decisions in the wait zone. These
behaviors involve the abandonment of continued

reward pursuit despite having made prior invest-
ments (partial waiting) while on a limited budget
(time). We parameterized the probability of earn-
ing a reward in the wait zone as a function of the
remaining time investment required to earn a re-
ward (future costs) and the prior time investment
already spent waiting in the wait zone [past
(sunk) costs; fig. S3]. The data yielded many
samples across all conditions of time remain-
ing and time spent (fig. S4), which allowed us to
measure the extent to which irrecoverable prior
investments (sunk costs) escalatedwait zone com-
mitment (fig. S5).
We found that mice, rats, and humans demon-

strated robust sunk cost effects [analysis of vari-
ance (ANOVA) collapsing across all sunk cost
conditions: mice, F = 30.75, P < 0.0001; rats, F =
45.65, P < 0.0001; humans, F = 3.95, P < 0.0001]
(Fig. 2). Importantly, increasing prior invest-
ment amounts generated a continuously stronger
sunk cost effect (example post-hoc comparison
between+1-s and+5-s sunk costs:mice, F=45.49,
P < 0.0001; rats, F = 54.41, P < 0.0001; humans,
F = 4.21, P < 0.05) (Fig. 2)—a critical tenet of the
sunk cost fallacy (2, 4).
Time spent in the offer zone also detracts

from the total time budget, and a similar analysis
can be performed (fig. S6). In contrast to our
findings for reevaluation processes in the wait
zone, we found no effect of time spent in the
offer zone. That is, the amount of time spent in
the offer zone did not alter the probability of
earning rewards once in the wait zone (ANOVA
collapsing across all offer conditions: mice, F =
1.55, P = 0.23; rats, F = 0.77, P = 0.39; humans:
F = 0.12, P = 0.74) (Fig. 3). Importantly, the de-
lay to reward did not start counting down while
the subject remained in the offer zone. This
meant that the animal was choosing between
distant options and had not yet invested in the
offer. This lack of an effect of time spent in the
offer zone on progress abandonment once com-
mitted suggests that waste avoidance, overall
resource depletion, and loss aversion are insuf-
ficient explanations of sunk cost–driven esca-
lation of reward-seeking behavior (figs. S7 to
S11, supplementary text S2 and S3, and table S1).
This also suggests that the offer zone and wait
zone may access separable valuation processes
and reveals a previously unknowndeterminant of
susceptibility to sunk costs rooted in dissociable
decision-making algorithms that are conserved
across species.
A sensitivity to sunk costs defies optimality

considerations (fig. S12). So, why has this cog-
nitive bias persisted across evolution (supple-
mentary text S4)? Three plausible psychological
mechanisms that support sunk cost biases in-
clude (i) that it may be more advantageous to
calculate reward value through effort expended,
(ii) state-dependent valuation learning (SDVL),
and (iii) within-trial contrast (WTC) processes
(12, 16–20). We discuss each of these below.
Because predicting valuations that depend on

future outcomes is complex and difficult, ani-
mals may have evolved processes in which val-
uation is measured from effort spent rather than
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calculated explicitly as an estimate from con-
structed imaginations of potential future out-
comes. Past effort is easy to measure but has a
limited (though nonzero) correlation with future
value. In contrast, calculating value from ex-
pected future outcomes has its own estimation
uncertainties. If the correlation between past ef-
forts and future value provides better predictions
than the uncertainties of future outcomes, then
animalsmay have evolved processes that use past
effort as a proxy to estimate future value (16, 19).
This can explain our observation that the postcon-
sumption evaluation increases proportionally to
the time spent waiting for the reward in all three
species (fig. S13 and supplementary text S5).
The fact that susceptibility to sunk costs only ac-
crued in the wait zone implies that valuations in
the offer zone depend on different processes
that do not includemeasures of effort spent, but

that may be more related to direct estimates of
future value.
The SDVL theory hypothesizes that energy

spent working toward reward receipt moves the
individual into a poorer energy state, enhancing
the perceived value of the yet-to-be-obtained re-
ward (19, 20). This continued work can thus es-
calate commitment of continued reward pursuit
with growing sunk costs. Similarly, the WTC
theory describes the sunk cost phenomenon as
an increasing contrast between the decision-
maker’s current physical state and the goal (21).
SDVL andWTCpropose that either physiological
or psychological states could drive added value,
leading to a susceptibility to sunk costs. How-
ever, we did not observe sunk costs accruing
during the offer zone, even though time spent in
the offer zone is equivalent in physical and cog-
nitive demands to time spent in the wait zone.

Simple explanations from the WTC and SDVL
theories would predict sunk costs to accrue in
the offer zone as well.
Past-effort heuristics, SDVL, and WTC can in-

deed be prominent drivers of the sunk cost effect
in our data when sunk cost effects are present.
Therefore, our work brings up an intriguing ques-
tion: How do decision-making processes differ
between thewait zone (susceptible to sunk costs)
and the offer zone (not susceptible to sunk costs)?
One possibility is that decisions made in the

offer zone and wait zone may rely on separate
processes that calculate value in distinct ways
through dissociable neural circuits (22–24). Re-
cent findings from other foraging tasks suggest
that choosing to remain committed to already
accepted options accesses different valuation al-
gorithms than deliberating between distant op-
tions (16, 25–27). We suggest that wait zone
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Fig. 1. Task schematics. (A) In the Restaurant
Row task, food-restricted rodents were trained on
a maze in which they encountered serial offers
for flavored rewards in four “restaurants.” Each restaurant
contained a separate offer zone and wait zone.
Tones sounded in the offer zone; a fixed tone pitch
indicated the delay for which rodents would have
to wait in the wait zone (1 to 30 s, random
on offer entry). Tone pitch descended in the wait
zone during the delay “countdown.” Rodents
could quit the wait zone for the next restaurant
during the countdown, terminating the trial. (B) In
the web-Surf task, humans performed an analogous
30-min computer-based foraging paradigm in
which they encountered serial offers for short
entertaining videos from four “galleries.” A static
“download bar” appeared in the offer phase indicating
delay length (1 to 30 s, random on offer entry),
which did not begin downloading until after
entering the wait phase. Downloads could be quit
during the wait phase. Humans were also asked
to rate each video on a scale from 1 (least enjoyable)
to 4 (most enjoyable) after viewing and to rank the
genres at the end of the session.
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Fig. 2. The amount of time spent waiting
increases commitment to continuing reward
pursuit in mice, rats, and humans. (A to
C) Probability of earning a reward in the wait
zone as a function of countdown time remaining
in (A) mice, (B) rats, and (C) humans. Black
data points indicate trials in which subjects had
just entered the wait zone. Colored data points
indicate time remaining in the countdown
after subjects had already waited varying times
(fig. S3). Linear regressions are plotted with 95%
confidence interval shadings. (D to F) Slopes
calculated from each linear regression in (A) to
(C) (“observed”) and slopes recalculated iteratively
from black data points to match colored data
ranges in (A) to (C) (“adjusted controls”)
(fig. S5) are plotted ±1 SEM. The colored tick
on the x axis indicates time in the wait zone until
the first significant sunk cost effect was observed.
ANOVAs were used to compare slopes of linear
regression models, testing for interactions
with sunk cost conditions and controls, correcting
for multiple comparisons. Not significant (n.s.),
P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.

Fig. 3. Resources spent while deliberating do
not contribute to the sunk cost effect. (A to
C) Amount of time spent in the offer zone
choosing to skip versus to enter did not influence
the probability of earning versus quitting once
in the wait zone after subjects chose to enter
(fig. S6). Linear regressions are plotted with 95%
confidence interval shadings. (D) Slopes calculated
from linear regressions are plotted ±1 SEM and
are not significantly different from each other or
zero in mice (F = 1.545, P = 0.229), rats (F = 0.767,
P = 0.392), or humans (F = 0.117, P = 0.737), on
the basis of an ANOVA with post-hoc comparisons
against zero. n.s., P > 0.05.
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decisions are driven by distinct mechanisms that
depend on recently accumulated states, whereas
offer zone decisions are driven by deliberation
mechanisms that simulate future outcomes con-
structed from a more extended knowledge base
of past experiences. There is strong neural evi-
dence across these species to suggest that com-
peting simulated future alternatives are being
represented, evaluated, and compared in de-
liberation algorithms, whereas other decision-
making systems depend on more immediate
sensory signals that likely include interocep-
tive signals of effort expended and representa-
tions of internal state (23–24, 28–31) (fig. S8 and
supplementary text S3). Each of these decision-
making systems provides computational advan-
tages better suited for different situations. Thus,
these multiple valuation algorithms can each
confer independent evolutionary advantages and
can coexist and persist across time and species
(22–24).
The sunk cost fallacy, by definition, arises from

valuing spent resources that cannot be recovered.
Our data finds that these sunk costs only accrue
under specific situations in mice, rats, and hu-
mans. We suggest that multiple, parallel decision-
making valuation algorithms implemented in
dissociable neural circuits have persisted across
species and over time through evolution. Our
data imply that these different valuation algo-
rithms are differentially susceptible to sunk costs.
Past studies that reported conflicting findings
across species may have failed to consider how
different decision systems drive behavior (fig. S14
and supplementary text S6 and S7). Studies iden-
tifying differences in sensitivity to sunk costs
should consider which decision-making pro-
cesses are being accessed by the individual in a
given task. Because these processes could change
between species, or within species but across
aging, stages of development, or circumstances,
so too could sensitivity to sunk costs.

Using a translational approach in mice, rats,
and humans, we find direct evidence in parallel
tasks that the sunk cost phenomenon is con-
served across species. Our findings highlight the
utility of economic paradigms that can dissociate
decision-making computations, using natural-
istic tasks that are translatable across various
species and that can be expanded to survey in-
dividuals of varying ages or psychiatric popula-
tions. These tasks and findings may aid future
research in education or neuropsychiatry by
shedding light on diagnostic or intervention strat-
egies and revealing the roles of neurally distinct
decision systems.
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Materials and Methods 

Mice 

32 C57BL/J6 male mice, 13 weeks of age, were trained in Restaurant Row. Mice 

were single-housed in a temperature- and humidity-controlled environment with a 12-hr-

light/12-hr-dark cycle with water ad libitum. Mice were food restricted to a maximum of 

85% free feeding body weight and trained to earn their entire day’s food ration during 

their 1-hr Restaurant Row testing session. A replication cohort of an additional 32 mice 

were run (Fig.S12). These mice were intentionally food restricted to a lesser extreme (a 

maximum of 90% free feeing body weight). All experiments were approved by the 

University of Minnesota Institutional Animal Care and Use Committee. 

 

Rodent flavored-pellet training (mice).  

Mice underwent 1 week of pellet training prior to the start of being introduced to the 

Restaurant Row maze. During this period, mice were taken off of regular rodent chow 

and introduced to a single daily serving of BioServ full nutrition 20mg dustless precision 

pellets in excess (5g). This serving consisted of a mixture of chocolate-, banana-, grape-, 

and plain-flavored pellets. Next, mice (hungry, before being fed their daily ration) were 

introduced to the Restaurant Row maze 1 day prior to the start of training and were 

allowed to roam freely for 15min to explore, get comfortable with the maze, and 

familiarize themselves with the feeding sites. Restaurants were marked with unique 

spatial cues. Feeding bowls in each restaurant were filled with excess food on this 

introduction day. 

 

Restaurant Row procedure (mice). 

Task training was broken into 4 stages. Each daily session lasted for 1hr. At test 

start, one restaurant was randomly selected to be the starting restaurant where an offer 

was made if mice entered that restaurant’s T-shaped offer zone from the appropriate 

direction in a counter-clockwise manner. During the first stage (day 1-7), mice were 

trained for 1 week being given only 1s offers. Brief low pitch tones (4000Hz, 500ms) 

sounded upon entry into the offer zone and repeated every second until mice skipped or 

until mice entered the wait zone after which a pellet was dispensed. To discourage mice 

from leaving earned pellets uneaten, motorized feeding bowls cleared any uneaten pellets 

upon restaurant exit. Left over pellets were counted after each session and mice quickly 

learned to not leave the reward site without consuming earned pellets. The next restaurant 

in the counter-clockwise sequence was always and only the next available restaurant 

where an offer could be made such that mice learned to run laps encountering offers 

across all four restaurants in a fixed order serially in a single lap. During the second stage 

(day 8-12), mice were given offers that ranged from 1s to 5s (4000Hz to 5548Hz, in 

387Hz steps) for 5 days. Offers were pseudo-randomly selected such that all 5 offer 

lengths were encountered in 5 consecutive trials before being re-shuffled, selected 

independently between restaurants. Again, offer tones repeated every second in the offer 

zone indefinitely until either a skip or enter decision was made. In this stage and 

subsequent stages, in the wait zone, 500ms tones descended in pitch every second by 

387Hz steps counting down to pellet delivery. If the wait zone was exited at any point 

during the countdown, the tone ceased and the trial ended, forcing mice to proceed to the 

next restaurant. Stage 3 (day 13-17) consisted of offers from 1s to 15s (4000Hz to 
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9418Hz) for another 5 days. Stage 3 is the timepoint used in Fig.S10. Stage 4 (day 18-70) 

offers ranged from 1s to 30s (4000Hz to 15223Hz) and lasted until mice showed stable 

economic behaviors. Our early 1-30s and well-trained 1-30s timepoints used in Fig.S9 

include the first 5 and last 5 days of stage 4. We used 4 Audiotek tweeters positioned next 

to each restaurant powered by Lepy amplifiers to play local tones at 70dB in each 

restaurant. We recorded speaker quality to verify frequency playback fidelity. We used 

Med Associates 20mg feeder pellet dispensers and 3D-printed feeding bowl receptacles 

fashioned with mini-servos to control automated clearance of uneaten pellets. Animal 

tracking, task programming, and maze operation was powered by AnyMaze (Stoelting). 

Mice were tested at the same time every day in a dim-lit room, were weighed before and 

after every testing session, and were fed a small post-session ration in a separate waiting 

chamber on rare occasions as needed to prevent extremely low weights according to 

IACUC standards (not <85% free-feeding weights). 

 

Rats. 

10 Fisher Brown-Norway rats (4 male, 6 female), aged between 8-12 months, were 

trained to run the Restaurant Row task variant with an offer zone. 22 Brown-Norway rats 

(male), aged between 8-12 months, were trained to run the Restaurant Row task variant 

without an offer zone. Rats were single-housed in a temperature and humidity-controlled 

environment and kept on a 12hr light/dark cycle with water ad libitum. Rats were food 

restricted to a maximum of 80% free feeding body weight and earned their food each day 

during their 1-hr Restaurant Row session. All experiments were approved by the 

University of Minnesota Institutional Animal Care and Use Committee. 

 

Rodent flavored-pellet training (rats). 

All rats were given 8 days of handling and pellet training prior to being introduced 

to the Restaurant Row task. Handling consisted of roaming freely on the experimenter’s 

lap for 15-20 minutes daily. For pellet training, rats were taken off ad libitum access to 

Teklad rodent chow and given 1hr of access to 15g of TestDiet full nutrition 45mg 

purified rodent tablets in four unique flavors (chocolate, banana, cherry, plain). Rats were 

allowed to eat freely, either while being handled, in a bedding-free cage, or a 

combination of both.  

 

Restaurant Row procedure (rats). 

Training in the task variant with an offer zone consisted of four training phases. 

Each session lasted 60min. Rats ran each phase for five days. Phase one consisted of 1s 

delays at each restaurant. Phase two consisted of randomly selected delays from 1-5s. 

Phase three included 1-15s offers, and phase four had the final delay range of 1-30s 

offers. Training in the task variant without an offer zone in a separate cohort of rats was 

slightly different. These rats were initially trained twice a day in 30min sessions. Training 

began with 5 days of 1s offers at all feeder sites. Then, the randomized list of delays 

presented to animals was expanded to 1-2s, 1-3s, 1-4s, and 1-5s delays over 4 

consecutive days. Rats then received 10 days of 1-30s delays. Next, rats switched to once 

a day 60min testing sessions using 1-30s delays. All delays were randomly selected and 

varied between day and restaurant. In the task variant with an offer zone, maze 

contingences were similar to mice described above. In the task variant without an offer 
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zone, delay countdowns began immediately upon entry into the restaurant. Rats ran in a 

counter clockwise direction, where offers were only triggered if the rats passed through 

each restaurant in serial order, such that trials would not be triggered when running 

backwards. After triggering a trial, the next available restaurant where an offer could be 

made was always the restaurant immediately after the last restaurant triggered, regardless 

of if an offer was accepted or declined. Rats were run at the same time each day in a very 

dimly lit room. At the start of the task, rats were always placed on the maze in the same 

place. Rats were weighed before running the task. If a rat was at or near their 80% weight 

and did not receive enough food on the track during their running session, they were fed 

no sooner than a half an hour after completing their running session. Maze operation was 

done by Matlab. We used 45mg Med Associated feeders to deliver the pellets into in-

house 3D printed feeding bowls. 

  

Humans. 

65 undergraduate students from the University of Minnesota completed the Web-

Surf Task (24 male, 41 female, mean age = 20.23 years), and an additional 17 completed 

the task variant without an offer zone (4 male, 13 female, mean age = 19.63 years); of 

note, 14 of these 17 subjects represent a subset of the data presented in Abram et al. 

2016.24 Participants received compensation in the form of extra credit towards 

psychology courses. Ethnicity of subjects included 73% White, 16.5% Asian, 4.5% 

Black/African American, 2.5% Hispanic/Latino, 0.5 American Indian/Alaska Native, 

0.5% Native Hawaiian/Pacific Islander, and 2.5% other. The University of Minnesota 

Institutional Review Board approved the human study procedures, and all undergraduate 

subjects provided written informed consent. 

 

Web-Surf procedure. 

In the task variant with an offer phase, subjects had 30 minutes to travel between 

four galleries that included video rewards; we used the same categories described in 

Abram et al. 2016 (15): kittens, dance landscapes, and bike accidents. Offers were 

presented in text and with a webpage-like progress bar. When subjects arrived at a 

gallery, they first had the option to stay or skip. If they chose to skip, they traveled on to 

the next gallery and encountered a new offer. If they stayed, they entered the wait phase, 

and the progress bar begins to count down. At any point before the delay finished, the 

subject could elect to quit, which again led the process of traveling to the next gallery. If 

the subject stayed through the entire delay, they were shown a video reward for 4 

seconds, after which they rated the video from 1-4 (4 = most enjoyed) according to how 

much they liked that video. When traveling between galleries, subjects pressed a series 

“next” buttons as they randomly appeared around a gray screen; numbers were presented 

in a slightly darker shade of gray to increase task difficulty. For training, subjects 

completed 3 forced-choice trials to illustrate what happens in the enter, skip, and quit 

conditions. The forced-choice trials are followed by 8 additional practice trials where 

subjects make decisions.  

In the task variant without an offer phase, subjects similarly had 30 minutes to travel 

between the same four categories, with offers presented in the same manner. In this 

variant, the delay began to countdown immediately upon gallery arrival. Subjects then 

had the option to quit and move on to the next gallery or continue to wait for the delay to 
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finish. Videos were again shown for 4 seconds, and subjects rated each viewed video on a 

1-4 scale (4 = most enjoyed). When passing between galleries, subjects clicked a series of 

“next” buttons that randomly appeared around the gray screen; the buttons were shown in 

dark gray to blend into the background to increase task difficulty. For training, subjects 

completed 2 forced-choice trials to illustrate quit decisions, followed again by 8 practice 

trials where they could decide whether to quit or earn. Regardless of the task variant, 

subjects ranked the categories by preference (again from 1-4, 4 = most preferred) after 

the testing session in a post-testing debriefing survey. 

 

Sunk Cost Data Analysis. 

All data were processed in Matlab and statistical analyses were carried out using 

JMP Pro 13 Statistical Discovery software package from SAS. The main analysis carried 

out in the manuscript critical to our findings included computing linear regression models 

of earning probability in the wait zone as a function of either time remaining in the wait 

zone (Fig.2,S8,S10,S12,S13,S14) or time spent in the offer zone (Fig.3,S12,S13). 

Fig.2,S8,S10,S12,S13,S14 compare the slope coefficients of these regressions interacting 

across various sunk cost conditions using an ANOVA with p(earn) as the dependent 

variable and time-remaining x sunk cost condition as factors. Importantly, control 

datasets were re-calculated to control for subtle skews in different dataset availability 

distributions between the various sunk cost scenarios (described in Fig.S5). Comparisons 

of interest included testing regression coefficients of the zero sunk cost condition against 

each sunk cost condition (Fig.2,S8,S10,S12,S13,S14 – data originating from black dataset 

against color datasets after taking into account proper adjusted control datasets illustrated 

in Fig.S5A-F) as well as testing regression coefficients of each sunk cost condition 

against other sunk cost conditions (Fig.2,S8,S10,S12,S13,S14 – color data against color 

data, again, after taking into account proper adjusted control datasets, illustrated in 

Fig.S5G). 

 

Modeling Sub-Optimality 

In the Restaurant Row and Web-Surf Tasks, decisions to abandon an on-going 

investment appear highly sub-optimal at face value, particularly if subjects were cued of 

the offer cost at trial onset before accepting. A potential optimal strategy could include 

making smart offer zone decisions to skip vs. enter informed by cued offer cost and never 

quitting once in the wait zone. Taking advantage of the economic nature of these tasks, 

we characterized the efficiency of observed behaviors by generating a computer model 

that predicted optimal number of rewards that could be earned if subjects were behaving 

as efficiently as possible. Optimal behavior was based on each individual’s behavioral 

performance (e.g., reaction time and subjective threshold of willingness to wait in each 

restaurant) if they were behaving as efficiently as possible (using the fastest quartile of 

reaction and consumption times, by following their revealed preferences strictly, by never 

quitting). Proportion of actual observed earnings relative to model-predicted maximally 

optimal earnings was calculated. 
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Supplementary Text S1: Cross-validating economic decisions and revealed 

preferences across species.  

Mice, rats, and humans learned to forage economically on these tasks (Fig.S1). We 

characterized multiple valuation metrics that revealed subjective flavor preferences 

similarly across dimensions in all species (Fig.S2). We ranked flavors from least- to 

most-preferred by summing the number of rewards earned in each flavor at the end of 

every session (Fig.S2A-C). We characterized how subjects budgeted their time within the 

limited session by calculating economic “thresholds” of willingness to earn rewards as a 

function of offer length in seconds (Fig.S2D-F). Thresholds for different flavors varied 

across individuals in all three species (Fig.S1D-F). Thresholds in rodents remained stable 

across many days for a given flavor for an individual (Fig.S1D-E). Additionally, subjects 

rarely violated these thresholds (Fig.S1G-I). We also characterized how subjects 

evaluated rewards post-consumption (Fig.S2G-I, see additional supplementary text 

below). Lastly, in humans, we obtained stated preference rankings in a post-testing 

debrief survey (Fig.S2J). All valuation parameters significantly correlated with each other 

in each species (Pearson and Spearman correlation coefficients all P<0.001, controlling 

for multiple comparisons). 

 

Supplementary Text S2: Controlling for time differences in the offer zone vs. wait 

zone across task variants.  

In the offer zone, the reward delay does not start counting down toward reward 

delivery. Therefore, two critical differences from the wait zone may explain why sunk 

costs do not accrue in the offer zone: (1) time spent in the wait zone is valued differently 

because it is actually counted toward reward-earning progress; (2) countdown tones that 

descend in the wait zone (i.e., melodic contours, 32) or a diminishing video download bar 

in the wait phase may carry added value learned through incentive salience (33). Both 

factors could weigh continued commitment in the wait zone disproportionately higher 

than quitting (i.e., enhance a loss-aversion bias) and could explain why sunk costs do not 

accrue in the offer zone. 

To control for these two factors, we tested rodents and humans in variants of the 

Restaurant Row and Web-Surf Tasks in which the offer zone was not present (Fig.S7). In 

these alternative task variants, time started counting down as soon as the subject entered a 

restaurant or video gallery. In rats, we found that the sunk cost effect (ANOVA 

collapsing across all sunk cost conditions, F=33.93, P<0.0001) did not begin to accrue 

until after an initial window of time had elapsed (Fig.S7B, post-hoc tests: +1s: F=0.08, 

P=0.78; +2s: F=0.22, P=0.64; +3s: F=0.01, P=0.93; +4s: F=2.15, P=0.14; +5s: 

F=12.69, P<0.001). Despite detracting from the session’s total time budget and despite 

counting as “down payments” progressing toward reward delivery, an initial portion of 

time spent was not counted toward sunk costs, mimicking offer zone findings. Thus, in a 

task variant without an offer zone, the sunk-cost effect in the wait zone had a delayed 

onset. This suggests a serial process of (1) choosing-between followed by (2) opting-out 

was still engaged, despite the lack of an explicit offer zone. In support of this, the 

window when sunk costs did not accrue matched the average reaction time it took rats to 

turn down offers (Fig. S7E, ~5s). Humans on this variant of the task also displayed the 

sunk-cost effect (ANOVA collapsing across all sunk-cost conditions, F=61.42, 
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P<0.0001), although a delayed onset was not detectable in these data (Fig.S7C, post-hoc 

test: +1s: F=12.29, P<0.001, unlike rats on this variant). However, humans were 

significantly faster than rodents at turning down offers, and, consistent with rodents, the 

onset of sunk-cost effects matched this average reaction time (Fig.S7F, ~1s). It is possible 

that humans similarly progressed through a serial process of choosing-between followed 

by opting-out but at a faster pace than rodents. 

 

Supplementary Text S3: Assessing vicarious trial and error behavior in rodents 

(and across learning in mice). 

In the offer zone, rodents displayed “pause and look” behaviors, known as 

“vicarious trial and error” (Fig.S8, 34-36). Vicarious trial and error behaviors reveal on-

going deliberation and planning during moments of indecision (34-36). Numerous in vivo 

electrophysiology recording studies have demonstrated that during these behaviors, 

hippocampal representations sweep forward along the path of the animal, alternating 

between potential goals until the animal knows where to go (37). Such goal 

representations are synchronized to reward-value representations in the ventral striatum, 

suggesting outcome predictions are being evaluated serially (38-39). This work on 

deliberation and serial planning has been replicated in rats in other labs (70). Other labs 

have also demonstrated these neurophysiological representations of future outcome 

expectations in certain deliberative situations in mice (71) and in humans (72-74). 

Compare the computational distinctions made in Ref. 75. A recent review on the 

neurophysiological processes underlying deliberation can be found in (Ref. 35).  

Restaurant Row training in mice (offer zone present) provided further insight into 

the development of a serial process decision stream: initially deliberating followed by re-

evaluations to opt-out. Mice were tested daily up to 115 days, far longer than rats 

(typically run for 40 days) and humans (tested in a single session). We observed 

pronounced changes in decision strategies between early and late training as mice were 

still learning the structure of the task. Early in training, mice rapidly accepted all offers 

indiscriminately without factoring in the randomly selected 1-30s offer cost, and thus 

relied on quits to turn down expensive offers (Fig.S9). In other words, offer zone enter 

decisions early in training were automated. This was likely a learned behavior in even 

earlier stages of training when offers were relatively inexpensive (see Methods, 

progressive stages: 1s offers only, offers ranging between 1-5s, and then between 1-15s), 

when cost information could be discarded, and when mice could afford to accept all 

offers. Interestingly, on these early 1-30s training sessions, we found that the sunk cost 

effect (Fig.S7A, ANOVA collapsing across all sunk cost conditions, F=4.46, P<0.0001) 

did not begin to accrue in the wait zone until an initial window had elapsed (post-hoc 

tests: +1s: F=0.14, P=0.71; +2s: F=0.28, P=0.60; +3s: F=0.65, P=0.43; +4s: F=1.67, 

P=0.20; +5s: F=4.10, P<0.05) that matched the average reaction time it took mice to 

quit offers (Fig.S7D, ~5s). This is reminiscent of the delayed onset of sunk costs 

observed in rats on the task without an offer zone when vicarious trial and error behaviors 

typically occurred (compare to Fig.S7B,E). That is, despite separating each restaurant 

into an offer zone and wait zone, mice early in 1-30s training essentially ignored the offer 

zone. Importantly, mice did not display vicarious trial and error behaviors in the offer 

zone early in 1-30s training (Fig.S9E-F). This suggests that an initial deliberation 
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decision was not actually made in the offer zone and that a true initial choose-between 

decision was not made until after mice entered the wait zone. Therefore, this would delay 

the onset of a secondary opt-out process in the wait zone. Taken together inexperienced 

mice transitioned between deliberation and foraging decision modalities once in the wait 

zone while experienced mice separated this transition between the offer- and wait zones 

(35). Importantly, the sunk cost effect tracked this transition across training.  

Well-trained mice were fully capable of discriminating randomly presented cued 

offer costs in the offer zone differently in the different restaurants, ensuring information 

uncertainty was not a confounding factor in rodents (Fig.S10). Furthermore, sunk cost 

effects occurred in all restaurants regardless of subjective flavor preference ranking, 

again only in the wait zone and not offer zone (Fig.S10). Environmental factors including 

different experimenters or severity of food restriction did not impact main sunk cost 

findings in a replication cohort of mice, despite influencing overall devalued economic 

behaviors likely due to satiety effects (Fig.S11). 

 

Supplementary Text S4: Assessing optimality. 

To determine whether behavior on these tasks was sub-optimal, we used a 

computer-simulation model to predict the maximal rewards subjects could earn if they 

behaved optimally by following their revealed preferences strictly by not abandoning 

accepted offers in the wait zone (see Methods). We found mice, rats, and humans indeed 

performed sub-optimally (Fig.S12A-C). This sub optimality arose from disadvantageous 

wait-zone decisions (Fig. S12D-F). We can use an individual’s restaurant’s threshold to 

calculate the relative value of each offer encountered. The value of the offer 

(VO=Threshold – Offer) plotted against the value of the time left in the countdown for a 

given trial at the moment of quitting (VL=Threshold – Time Left To Go) reveals the 

economic efficiency of wait zone decisions. Economically disadvantageous wait-zone 

quit decisions drive sub optimality through a susceptibility to sunk costs. 

 

Supplementary Text S5: Assessing post-consumption hedonic valuations. 

The value of a reward can be assessed in multiple ways. Often, this is measured in 

an instrumental manner, where how willing a subject is to take a reward (e.g., measured 

in amount of resources spent, effort expended, or behavioral invigoration) can reflect 

reward valuation. This is sometimes referred to as reward-seeking, reward-taking, or 

“wanting” valuations (33,40). In the Restaurant Row and Web-Surf Tasks, these are 

measurable in offer- and wait zone choice behaviors. These are distinct from post-

consummatory valuations after an individual has earned a reward. Such post-

consumption valuations are sometimes referred to as hedonic or “liking” valuations (40). 

In the Restaurant Row and Web-Surf Tasks, these can be measured after subjects earned 

rewards. In humans, this is more overtly assessed, since subjects were asked to rate each 

video on a scale from 1-4 (4=most enjoyed) immediately after viewing (or “consuming”) 

the short (4s) video reward. These ratings matched other metrics of subjective valuation 

on this task (Fig.S2C-J). Importantly, naturally enjoyable videos were used to mimic the 

same immediate consummatory nature of inter-trial pellet eating used in many appetitive-

driven rodent laboratory studies (which is unlike many human studies that use 
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hypothetical ratings, money, or other token-systems redeemed at the end of testing). 

Interestingly, we found that rodents, after earning and consuming food pellets on the 

Restaurant Row task, often lingered at the reward site before advancing to the next trial at 

the next restaurant (Fig.S2G,H). Surprisingly, rodents typically spent ~50% of the entire 

1hr testing session engaging in this lingering behavior. This decision to linger rather than 

leave, where no overt reward is being sought out, may represent a conditioned-place-

preference-like effect associated with each restaurant’s unique context (33). Interestingly, 

rodents lingered longer in more-preferred restaurants (Fig.S2G,H). Therefore, we can 

take this behavioral metric as one that is (a) distinct from an instrumental reward-taking 

or “wanting” valuation, (b) appears to mimic post-consumption hedonic valuations 

measured in humans on the parallel Web-Surf Task, and (c) captures subjective flavor 

preferences that match other valuation metrics for unique flavors on this task, similar to 

humans (Fig.S2). 

Interestingly, we found that the degree of post-consumption hedonic valuations 

correlated with offer cost in mice, rats, and humans (Fig.S13). That is, after subjects 

earned rewards that required more expensive investments, they hedonically valued those 

consumed rewards higher compared to earned rewards that were inexpensive. This is 

related to but distinct from the sunk-cost phenomenon, which is rooted in enhanced 

reward valuations. The sunk-cost phenomenon is classically described as an escalation of 

continued reward investment or commitment as a function of irrecoverable past 

investments made toward reward receipt. Thus, the sunk-cost effect is linked to 

enhancements in instrumental reward-taking valuations. The sunk-cost phenomenon, 

classically, makes no prediction with regard to the hedonic value of already owned or 

consumed rewards. While the two types of valuations are certainly related, they are 

separable on the Restaurant Row and Web-Surf Tasks. At the surface, because findings in 

Fig.S13 are related to both post-earn hedonic valuations as well as instrumental reward-

taking costs required to earn the reward itself, these data appear related to two other 

cognitive heuristics often compared to the sunk-cost phenomenon: the endowment effect 

and the post-purchase rationalization effect. The endowment effect posits that already 

owned objects are more highly valued than those not possessed (41). The post-purchase 

rationalization effect (sometimes described as “Buyer’s Stockholm Syndrome” or 

“Marketing Placebo Effect”) is a choice-supportive bias that posits more expensive 

rewards are more highly valued than less expensive rewards after purchasing them (42-

44). Data in Fig.S13 is consistent with the post-purchase rationalization effect shared 

across species. While there have been reports of the endowment effect in non-human 

animals, to our knowledge this is the first report of evidence for the post-purchase 

rationalization effect in non-human animals (45-46). 

 

Supplementary Text S6: Assessing the role of environmental scarcity. 

The sunk-cost effect may also relate to the amount of reward available in the 

environment. In a reward-scarce environment, the importance of decision optimality is 

higher than in a reward-rich environment. In other foraging tasks, rodents have been 

shown to adopt sub-optimal foraging strategies exacerbated in reward-scarce 

environments (16). These reports hint at sunk-cost-like effects that depend on the 

subjective over-valuation of time invested as a function of the state of the environment. 
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Interestingly, mice training in relatively reward-rich environments (where offers ranged 

from 1-15s) did not demonstrate sunk-cost effects (Fig.S14, ANOVA collapsing across 

all sunk-cost conditions, F=1.13, P=0.35), consistent with these reports. This indicates 

another important determinant of the sunk-cost phenomenon – environmental reward 

scarcity – that may have been overlooked in past studies presenting conflicting findings 

across species. This data is consistent with notions in other work that demonstrate State-

Dependent Valuation Learning (SDVL) depends on the subject being in a leaner state and 

not necessarily on lack of training (19-20). This helps explain why studies of Within-

Trial Contrast (WTC) may have had unreliable outcomes. 

If sunk-cost effects existed all the time in a leaner environment in our tasks (in the 

offer zone and wait zone, or during all moments in the wait zone in the task variants 

without an offer zone), sunk-cost effects on our task could be fully explainable by SDVL. 

The fact that decision processes seem to be interrupted or segregated into distinct stages 

within the same trial only in leaner environments and that these separate stages are 

differentially susceptible to sunk costs reveals dissociable valuation algorithms are at 

play within the same trial. Furthermore, aligning with the rationale posited in other work 

in response to reasoning for lack of WTC effects due to lack of sufficient training in other 

studies, effects reported in Fig.S14 (lack of sunk cost effects even in the wait zone after 

any duration of waiting) occurred after 17 days of consecutive training (20). This 

included exposure to roughly 4,500 trials overall on average per mouse by day 17, or 

1,500 trials of 1-15s offers in that training block (days 13-17), with 100 trials per newly 

experienced offer stimulus in that block (tones representing 6-15s offers). The previous 

block of training (days 8-12) included 1-5s offers and thus added additional exposure 

(roughly 400 trials) to 5s tones (capable of eliciting sunk cost effects in leaner 1-30s 

environment), by the 1-15s offer block. Despite any of this, tones only provide extra 

information that SDVL and WTC, in theory, could function without in order to drive 

sunk cost effects in this task design. 

 

Supplementary Text S7: Helping resolve discrepancies in previous work. 

There is a large body of literature sparked by an early publication from Arkes & 

Ayton that not only suggested non-human species are incapable of displaying the sunk-

cost fallacy, but that human children are also incapable of displaying the sunk cost fallacy 

(2). That is, children “outperform” adults by not factoring in added value due to sunk 

costs. This study postulated that children have not yet learned a socionormative “do not 

waste” rule in these early stages of development. The majority of studies building off of 

this work have primarily focused on phenomenology of the sunk cost fallacy in the 

context of aging and have largely focused on developmental processes from a psychology 

perspective, departing from comparative studies across species as well as advancements 

in neuroscience. As a result, the original notion put forth by Arkes & Ayton has remained 

largely unchallenged, with caveats, exceptions, and inconsistencies found in follow-up 

human studies informing newer theories of developmental psychology that further depart 

from cross-species and neurobiological mechanistic work on decision-making 

information processing (2). 

 For instance, work on impulsivity in children is mixed and at odds with Arkes & 

Ayton’s claim that children are more likely to resist sunk costs (2). Several studies in 
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children report sometimes positive, sometimes negative, or sometimes no correlation 

between decision-making competency or impulsivity inventory scales and susceptibility 

to honor sunk costs (47-49). Various explanations attempting to explain such 

discrepancies have been proposed, rooted in self-regulation, perseveration, learned rules 

to not waste, and ability to recognize when to activate appropriate heuristics (49-58). 

Such decision-making competency and impulsivity inventories have been well-validated, 

control for general mental ability and intelligence, and are capable of predicting, for 

example real-world negative socioeconomic and health outcomes attributed to lifestyle 

choices, including risk of substance abuse and delinquency later in life (59-61). Other 

studies show, at the other end of the spectrum, that older adults too are less sensitive to 

sunk costs than younger adults, adding an inverted-U shape trajectory to the variable 

prevalence of this cognitive bias (62). Such reports suggest that older adults are less 

likely to ruminate on past expenditures and prior negative events, are better at coping 

with failed plans, and are less likely to mention sunk costs when making decisions about 

the future (62-69). None of these studies include any mechanistic data nor interpretation 

of their work in the context of changing neural circuits of different, parallel decision-

making valuation systems. We propose that future studies should integrate biologically 

plausible models of the neural mechanisms underlying nonlinear developmental changes 

in separable decision systems (22-24). Our data can offer a fresh lens through which we 

and others can revisit past literature and inform future experiments. 
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Fig. S1. Economic thresholds and budgets in Restaurant-Row and Web-Surf Tasks. 
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infrequently quitting once in the wait zone (black dots). Dashed vertical black lines represent calculated offer 
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Fig. S2. Multiple valuation metrics of subjective preferences. 
(A-C) Flavors were ranked from least- to most-preferred by summing the number of rewards earned in each 
restaurant or gallery in a single session. Panels show one example session in mice (A), rats (B), and humans 
(C). (D-F) Average thresholds sorted by rankings as defined in (A-C) were higher for more-preferred flavors in 
mice (D), rats (E), and humans (F). (G-I) Post-consummatory hedonic valuations sorted by rankings as defined 
in (A-C) we higher for more-preferred flavors in mice (G), rats (H), and humans (I). See Supplemental Discus-
sion. (J) After the testing session was completed, human subjects stated rankings in a survey debrief session. 
Stated preferences were higher for more-preferred genres sorted by rankings as defined in (C). Multivariate 
Pearson and Spearman correlation analysis controlling for multiple comparisons found that all valuation 
metrics (earn rankings, calculated thresholds, post-consumption behaviors, and stated preferences [humans 
only]) significantly correlated with each other within each species (all correlations, P<0.001). 
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Fig. S3. Example economic scenarios in the wait zone sunk-cost analysis. 
(A) Example in which a subject is offered a 15s-reward and chooses to enter the wait zone. [e.g., 100 cases of 
15s offers entered]. Once in the wait zone, subjects could choose to quit at any moment. For example, taking 
trials where subjects had invested 5s in the wait zone and had not yet quit from that point onward [e.g., 25 trials 
already quit with <5s spent waiting, leaving 75 / 100 trials “surviving” so far] , we calculated the probability of 
earning a reward in the 10s window remaining in the countdown [e.g., 25 / 75 trials survived from that point 
forward until countdown completion = 0.33]. (B) Contrast with an example with a different initial starting 
offer: 25s. In this example, trials where subjects had invested 15s in the wait zone and had not yet quit have the 
same 10s window remaining in the countdown.  We compared the p(earn) probabilities calculated in scenario A 
with the p(earn) probabilities calculated in scenario B. The sunk cost effect would predict an observed increase 
in p(earn) after investing 15s (B) compared to after investing 5s (A). The Restaurant Row and Web-Surf Tasks 
provide multiple initial starting delays of the offer as well as shifts in the analysis point, highly parameterizing 
the sunk cost effect along a continuum, along past-(sunk)- and future-cost dimensions.
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indicates number of trials binned in each unique economic scenario for mice (A), rats (B), and humans (C). 
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Fig. S5. Visualization of method to control comparisons between economic conditions in wait zone sunk cost analysis. 
Using human data as an example, we ensured that our interpretation of slopes from linear regressions was not skewed by the different distribu-
tions of available data in the different sunk cost conditions. For instance, data from “30s remaining in the countdown” does not exist for the 
+1s sunk cost condition while it does exist for the zero sunk cost condition. To correct for this potential confound, we used regressions on the 
zero sunk cost condition iteratively leaving out the right most data points successively as the underlying control (A). Colored arrows indicate 
data that was included for each adjusted control regression: +1s-sunk costs (green), +5s-sunk costs (blue), +10s-sunk costs (purple), +15s-sunk 
costs (magenta), and +20s-sunk costs (red). (B-F) Examples of comparing regressions between each sunk cost condition and the zero sunk 
cost condition adjusted for the progressively smaller dataset illustrated in (A). (G) Similar concept of using regressions on progressively 
shortened datasets instead here to compare two sunk cost conditions against each other. In this example, the +5 sunk cost condition can only 
include offers from 1-25s. Thus, comparison against the +1 sunk cost condition, when adjusted, includes that same limited range of offers.
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Fig. S6. Example economic scenarios in the offer zone sunk-cost analysis. 
In these two scenarios, subjects were offered a 15s-reward and chose to enter the wait zone. Scenario A illus-
trates a rapid decision to enter whereas scenario B illustrates a slow decision to enter where subjects invested 
more time in this initial offer zone decision. In both examples, the delay is the same (both 15s). We calculated 
the probability of earning once in the wait zone. The sunk cost effect, based on a resource-
depletion/wastefulness-avoidance would predict an observed increase in p(earn) in (B) compared to (A). How-
ever, we found no such changes in mice, rats, or humans. 
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Fig. S7. Additional sunk cost analyses across training and in other task variants. 
(A) Mice early on in training still displayed sunk cost effects, however did so with a delayed onset compared to late in training (see Fig.2D). 
Blue colored tick on x-axis indicates time in wait zone until first significant sunk-cost effect was observed. Transparent green tick replotted 
from Fig.2D for reference in mice with extensive training. (B-C) A separate cohort of rats (B) and humans (C) were trained on variants of the 
Restaurant Row and Web-Surf Tasks without an offer zone where countdown began immediately and subjects only made quit decisions. 
Colored tick on x-axis indicates time in wait zone until first significant sunk-cost effect was observed. (B) Transparent green tick replotted 
from Fig.2E for reference in rats on the task variant with an offer zone. (D-F) Cumulative probability distribution of quit reaction time in the 
wait zone in mice (D), rats (E), and humans (F). Black tick on x-axis indicates cohort average reaction time ±1 SEM. Dot scatter below axis 
represent individual subjects’ average reaction time. ANOVAs were used to compare slopes of linear regression models, testing for interactions 
with sunk cost conditions and controls, correcting for multiple comparisons. Not-significant (n.s.) P>0.05, *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001.
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Fig. S8. Measurement of Vicarious Trial and Error in rodents. 
Illustrated here are X-Y-locations of a rodent’s path-trajectory in the offer zone over time during two example 
trials. Vicarious trial and error measures the absolute integrated angular velocity over time and is measured in 
IdPhi units. (A) Example of a low vicarious trial and error event without any re-orientations. (B) Example of a 
high vicarious trial and error event with re-orientations at the choice-point.



Early Training Extended Training

Early Training Extended Training
C D

E F

1 30offer (s) 1 30offer (s)

1 30offer (s) 1 30offer (s)

0%

5%

%
 o

f a
ll 

of
fe

rs
 

0%

5%

%
 o

f a
ll 

of
fe

rs
 

0%

5%

%
 o

f a
ll 

of
fe

rs
 

0%

5%

%
 o

f a
ll 

of
fe

rs
 

enter
skip

earn
quit

0 20 40 60 80 100 1200

0.016

pr
op

or
tio

n 
of

 tr
ia

ls

0 20 40 60 80 100 120
Vicarious Trial and Error

(idphi)
Vicarious Trial and Error

(idphi)

Early Training Extended Training

0

0.016

pr
op

or
tio

n 
of

 tr
ia

ls

A B G

H

I

*

*

*

0

45
In

te
r-E

ar
n-

In
te

rv
al

 (s
)

0

10

W
Z 

Q
ui

t T
im

e 
(s

)

0

2

O
Z 

Ti
m

e 
(s

)

early 
training

extended
training

early 
training

extended
training

early 
training

extended
training

Fig. S9. Change in decision-making behavior over training in mice on the Restaurant Row task. 
(A-B) Offer zone choice probability between skipping vs. entering as a function of offer length early in training (see Supplementary Discus-
sion). (A) and after extended training (B). Mice entered nearly all offers indiscriminately early in training (A) while later learning to skip 
expensive offers (B). (C-D) Wait zone choice probability between quitting vs. earning as a function of offer length early in training (C) and 
after extended training (D). Mice learned to quit less with extended training, as they were more likely to accept offers in the offer zone they 
would be willing to earn. Black tick on the x-axis in B-D indicate cross over point of skip/enter or quit/earn decisions. Horizontal dashed 
black line indicates choice probabilities if decisions were random. (E-F) Probability density plots of vicarious trial and error behavior in the 
offer zone across early (E) vs. extended training (F). Red arrow in F emphasizes the presence of high vicarious trial and error events as mice 
learned to deliberate in the offer zone between cheap and expensive offers, illustrated in B. Gray arrow in (E) emphasis the absence of these 
high vicarious trial and error events as mice made snap judgments to accept all offers indiscriminately, illustrated in A. (G-I) As a conse-
quence of learned changes in decision-making strategies over training, offer zone reaction time increased (G, F=67.38, *p<0.0001), wait zone 
quit time decreased (H, F=36.48, *p<0.0001), and reinforcement rate increased (I, decrease in inter-earn-interval time between pellet 
consumption, F=45.26, *p<0.0001). (open circles in (G-I) represent individual animals, error bars ±1 SEM)
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Fig. S10. Asymmetries in choices split by subjective value reassures cost discriminability in mice. 
Vertical columns split data by rankings (categorized in Fig.S2). (A-B) Choice outcome probabilities in the offer zone (A) or wait 
zone (B) relative to all offers encountered across all restaurants for a given offer length. Because offers are randomly presented 
from trial to trial, differences in offer zone ability to skip vs. enter high cost offers separated by subjective value helps ensure 
mice are capable of discriminating tones and information uncertainty is less of a confound. (C) Sunk cost effects in the wait zone 
exist in all restaurants (least: F=3.33, p<0.05; low: F=4.34, p<0.05; high: F=10.11, p<0.01; most: F=26.69, p<0.001). (D) Sunk 
cost effects in the offer zone do not exist in all restaurants (Pearson coefficient: least: r=0.089, p=0.75; low: r=-0.097, p=0.69; 
high: r=-0.207, p=0.38; most: r=-0.077, p=0.74). p(earn) in (C-D) are relative to each restaurant’s offers. (error bars ±1 SEM, 
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Fig. S11. Replication cohort of mice varying environmental factors.
An additional 32 mice were tested on the main variant of the task (offer zone and wait zone). Experimenters were varied, and 
these mice were trained in the exact same apparatuses as the original cohort under the exact same training protocol. Additionally, 
these mice were intentionally food deprived to a lesser extreme. Despite these different environmental factors, mice still demon-
strated a robust sunk cost effect in the wait zone (B, F=26.56, p<0.01, see original cohort in A for comparison) but no effect as a 
function of time spent in the offer zone (D, r=-0.254, p=0.27, see C for comparison). Environmental factors, while not affecting 
locomotor abilities nor number of offers encountered by not altering number of laps run (E, F=2.86, p=0.10), did result in a 
reduction in average number of pellets earned on the task (F, F=46.79, *p<0.0001). This is reflected in an overall left shift of the 
economic budget curves in panel B (vertical red dashed line indicates 15s, horizontal red line indicates 0.5 p(earn)), reflecting an 
alteration in reward value and willingness to wait. (open circles in (E-F) represent individual animals, error bars ±1 SEM, shaded 
region represents 95% confidence interval of correlation, not significant, n.s.)
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Fig. S12. Modeling sub-optimality and economic efficiency across species. 
Proportion of total rewards mice (A), rats (B), and humans (C) actually earned relative to model-estimated maximal predicted earnings taking 
into account individual differences in behavioral performance and subjective valuation preferences (see Methods and Supplemental Discus-
sion). Observations are normalized to perfectly optimal earnings in our model (1.0, e.g., using minimal reaction times and no quits based on 
each subject’s behavior and restaurant-specific thresholds). Mice, rats, and humans all behaved significantly sub-optimally according to this 
model (t-test comparing means against 1.0, mice: t=-31.962, p<0.0001; rats: t=-8.43, p<0.0001; humans: t=-20.29, p<0.0001). (open circles in 
(A-C) represent individual animals, error bars ±1 SEM). (D-F) Pooled data across all subjects to visualize economic efficiency of quit 
decisions. This was measured by calculating two “value” metrics (offer value defined as the difference between each subject’s restaurant-
specific normalized threshold and offer, value left defined as the difference between threshold and the remaining countdown at the moment of 
quitting) (see Methods and Supplemental Discussion). Dashed blue lines indicate 0 value for both metrics, where either the offer = threshold 
(vertical) or the time remaining in the countdown when quitting = threshold (horizontal). In (F), a single example trial is circled in green and 
described in detail for demonstration purposes. Pie charts in (D-F) quantify percentage of all quits that fall into each of the 3 color-coded 
quadrants of the scatter plot (green = smart quits; red/orange = bad quits).



A

B

C

0 30

Po
st

-C
on

su
m

pt
io

n
Li

ng
er

in
g 

(s
)

Offer (s)

0 30

Po
st

-C
on

su
m

pt
io

n
Li

ng
er

in
g 

(s
)

Offer (s)
10

30

10

30

0 30

Po
st

-C
on

su
m

pt
io

n
R

at
in

g 
Sc

or
e

Offer (s)
2.5

3.5

Fig. S13. Offer cost and post-consumption valuations. 
(A-C) Hedonic valuation metrics measured immediately after consuming rewards as a function of offer length in mice 
(A), rats (B), and humans (C). Rodents (A-B) lingered at the reward site after consuming rewards before leaving for 
the next trial at the next restaurant (see Supplementary Discussion). Humans (C) rated videos on a scale from 1-4 
(4=most enjoyed) immediately after viewing earned rewards. Post-consumption valuations positively correlated with 
offer cost in mice (A, Pearson coefficient r = 0.737, P<0.001), rats (B, r = 0.733, P<0.001), and humans (C, r = 0.473, 
P<0.05). (error bars ±1 SEM, shaded region represents 95% confidence interval of correlation).
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Fig. S14. Wait zone sunk cost analysis in mice in a reward-rich environment. 
Before being exposed to the full range of 1-30s offers in the Restaurant Row task, mice were trained on 1-15s offers 
where reward cost was relatively inexpensive (see Methods, supplementary text S6). Slope of linear regressions 
plotted with ±1 SEM. There were no significant differences (P>0.05) between sunk costs conditions, controlling for 
adjusted data distributions previously described.



Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6

Date Spring 2014 Spring 2014 Fall 2016 Spring 2017 Spring 2017 Fall 2017

Species Rat Human Mouse Rat Human Mouse

Breed Brown-Norway undergraduates C57BL6J
Fisher Brown-

Norway
undergraduates C57BL6J

Sample Size & Sex 22 (M) & 0 (F) 4 (M) & 13 (F) 32 (M) & 0 (F) 4 (M) & 6 (F) 24 (M) & 41 (F) 32 (M) & 0 (F)

Age 8-12 months 19.63 years (mean) 13 weeks 6-10 months 20.23 years (mean) 13 weeks

Task Variant wait zone only wait phase only
offer zone + wait 

zone
offer zone + wait 

zone
offer phase + wait 

phase
offer zone + wait 

zone

Experimenters & 
Gender

1 (M) & 1 (F) 3 (M) & 5 (F) 2 (M) & 3 (F) 2 (M) & 2 (F) 0 (M) & 6 (F) 3 (M) & 3 (F)

Length of Training 20+ days 5 minutes 70+ days 20+ days 5 minutes 70+ days

Food Depriva�on >80% free weight N / A >80% free weight >85% free weight N / A >90% free weight

Table S1. Cohort information in chronological order of data collection.
The sequence of experiments that took place across labs inspired and informed subsequent experiments. The 
similarities and differences across species in fact reflect a strength that our work capitalizes on, demonstrating 
robustness of main effects despite these variations as well as harnessing interesting differences in certain effects 
because of between-cohort differences. The approach and design we used makes this naturalistic foraging task easily 
expandable to a wide variety of populations, including different ages or patient populations in humans, as well as other 
strains of rodents or other species beyond rodents.  
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